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EXECUTIVE SUMMARY 

The hi-STAR project addresses one of the most critical challenges for the next generation 

wireless networks, which is integration of non-terrestrial networks with terrestrial 5G network. 

The general objective of the WP4 is to develop a traffic control unit (TCU) that will benefit from 

multiple RANs (Radio Access Networks) and increase the reliability of users’ communication. In 

order to develop the TCU and verify its performance, it is necessary to create a simulation 

environment and propose the handover procedure that will improve the user experience. 

This deliverable is a result of the work done in the context of WP4 Subtasks T4.1 (Simulation 

environment creation) and T4.2 (Design of traffic control module placed in HUT). We briefly 

review the simulation environment that includes LEO (Low Earth Orbit) satellite-to-ground 

communication links and a user-centric handover execution method. Following this, a 

description of the expert system based on various machine learning (ML) models including 

(neural networks) is given, alongside the dataset containing the simulations for its evaluation. A 

comparison between various ML models is given, and a review of system performance in terms 

of two types of adaptive coding and modulation scenarios. 
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SECTION 1 - INTRODUCTION 

 

The increased need for communication, followed by the necessity of infrastructure development 

can be considered one of the main challenges in the communication industry [1]. Handling 

multiple RANs and developing handover execution and load balancing strategies presents a 

crucial step towards this direction. 

 

The System that can successfully optimize communication through multiple RANs and minimize 

the usage of resources requires reliable information regarding the channel through which the 

communication is to be performed. In terms of LEO satellites, this would imply an accurate 

estimation of the channel’s SNR, so that the optimal modulation can be used. This would ensure 

not only higher spectral efficiency, but also a lower transmission error rate, and could contribute 

to using a lower number of handovers to obtain the necessary communication requirements. 

With the development of AI, more specifically ML algorithms and complex neural networks, this 

problem has been observed from the data science perspective, providing models that can aid 

communication performance in different scenarios [2]–[4]. 

 

The Deliverable D4.2 summarizes the continued work carried out within WP4 subtasks T.4.1 and 

T4.2. In the above subtasks we have investigated the possibility to perform user-centric 

handover in heterogeneous radio environment, where the end user could establish connectivity 

through 5G base station, or multiple LEO satellites. Deliverable 4.2 focuses on various ML models 

used for SNR prediction, in order to obtain a higher spectral efficiency and a lower transmission 

error rate. The ML models are evaluated using a dataset of simulations with various conditions 

and 2 RANs each, and with two different MODCOD options.  

 

This deliverable is structured as follows: In Section 2 a review of the system model is given. 

Section 3 defines the expert system that is used for the decision making, including various ML 

algorithms, the evaluation protocol and the dataset that is used for evaluation.  Section 4 

presents the results of the evaluation accompanied by a discussion regarding the obtained 

metrics. Section 5 concludes the document. 
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SECTION 2 – SYSTEM MODEL 

 

2.1. ITCU OPERATION SUMMERY 

In this section we briefly explain the system model of the ITCU (Intelligent Traffic Control Unit), 

which is from most part inherited from the Deliverable D4.1. In Fig. 1 we depict typical physical 

layer of RAN and the position of ITCU in it. One of the basic operation pre-required for the 

handover execution is measurement of the channel state information, i.e., measurements of 

instantaneous SNR. In our simulation environment we use data-added with pilots variant of so 

called SNORE (Signal-to-Noise-Interference Ratio estimator) algorithm, developed in NASA Jet 

Propulsion Laboratory. The ITCU collects channel state information from each available RAN, 

transformed them into decision making policy and sends control information via a backchannel 

to an access point of each RAN. 

 

Figure 1. Block diagram of physical layer RAN. 

 

Typical RAN supports a set of MODCODs spectral efficiencies M={M1,M2,…,MK}, each associated 

with monotonously increasing function �:� → ℝ:  where T(Mi) represents minimal SNR value 

needed to operate in the MODCOD Mi, also called the threshold. If we denote the instantaneous 

SNR in the channel by � then the optimal MODCOD is the greatest element in a set �� ⊆ �, �� =
{�
|�(�
) ≤ �}, i.e., supremum of �� denoted as sup(��). In a special case when �� = ∅, the 

lowest spectral efficiency M1 will be used for transmission.         

 

Let us enumerate all of total N RANs that end-user can use to establish communication by a set 

I={1,2,…N}. At a time interval (tj-1,tj] the end-user measures instantaneous SNRs for all the 

currently available RANs, i.e., RANs from a set �� ∈ �. The principle of forming the Ij set will be 

discussed later. The measured values form a set Γ� = {���,
|� ∈ ��}, where ���,
 represents 

measured SNR in [dB] of the i-th RAN, during time interval (tj-1,tj]. Then, a prediction function �: ℝ� → � is executed, which for all the available RANs produces the MODCODs that will 

potentially be used until the next SNR measurements are completed, i.e., in the time interval 

ITCU 
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(tj,tj+1]. The goal of the function f() is to make predictions regarding the optimal MODCOD, based 

on the current and previous SNR measurements. Let � ⊆ � be a set of MODCOD efficiencies 

form in the following way 

� =  �!"#$���,
, ���%&,
, ���%',
( ≥ �(�!)* 

where ��,
 ∈ Γ�, while #:ℝ� → ℝ+ produces prediction of channel state information (i.e., SNR 

value). Thus we have 

�$���,
, ���%&,
, ���%',
( = sup(�) 

The end-user simply chooses the RAN that will produce the MODCOD with the highest spectral 

efficiency, i.e.,   

� ,���,-. , ���%&,-. , ���%',-./ ≥ �$���,
, ���%&,
, ���%',
(, ∀� ∈ �� . 
 

In case that there are multiple RANs that achieve maximal efficiently, and the previously used 

RAN is among then, the end-user does not perform a handover. Otherwise, the least used RAN in 

the current time window in selected, in order to reduce the possibility that selected RAN leaves 

a set of available RANs. If 2� ≠ 2�%& the handover procedure is triggered and the information of 

the preferred RAN is send to the network core via reverse link. 

 

Note that in Deliverable 4.1. we optimized the threshold margin, however our further findings 

revealed that the prediction of SNR could be directly made, by state-of-the-art machine learning 

models, as discussed in the subsequent section.  

 

Formally, we recapitulate the steps of the handover procedure from D.4.1 as follows: 

• The end user makes statistics of RANs usage in a predefined time window. All RANs, 

which utilization (in the time window) is below some threshold, compose a set of 

available RANs;   

• The end user also collects pilot symbols from all the available RANs and periodically 

measures SNR values; 

• Based on the current and previous SNR measurements end user makes predictions of 

future SNR values for each available RAN, by using DNN; 

• Based on the SNR predictions, MODCOD for potential subsequent communication is 

obtained for each RAN; 

• If there exists available RAN with the predicted MODCOD that offers higher spectral 

efficiency than correctly used RAN, handover execution is triggered by the end user.  

2.2. RECAPITULATION OF THE CHANNEL MODEL 

 

In this deliverable we are only interested to investigate what effects instantaneous SNR, denoted 

by γ(t) has on handover procedure, defined as following 

�(4) = �56'
|ℎ(4)|'

89 , 
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 where PT is transmitted power, σ
2
 is noise variance, d is distance between source and 

destination, β is path-loss factor and |ℎ(4)|' is time-varying channel power gain. The probability 

density function of the channel gain h(t) depends on the propagation environment, which could 

be different in satellite-to-ground and terrestrial communications. In this deliverable we 

assumed that channel gain between RAN access point and end-user is composed of two time-

vary components: i) scattering and ii) line-of-sight (LOS) component, i.e.,  [9-11]   

ℎ(4) = :(4);�<(=) + ?(4);�<@ , 
 where a(t) represents instantaneous scattering amplitude which is Rayleigh distributed, α(t) is 

uniformly distributed random phase, z(t) is amplitude of the LOS component which is Nakagami-

m distributed, and α0 is deterministic phase. The probability density function of channel gain 

amplitude r(t)=|h(t)| can be represented as 

�A(B) = C 2EFG2EFG + ΩI! B
EF ;% JK

'L@&M& NG, 1, ΩB'
2EF(2EFG + Ω)P ,									B ≥ 0, 

where 2b0 denotes the average power of scattering component, Ω is average power of LOS 

component, m represents parameter of Nakagami-m distribution and 1F1() is confluent 

hypergeometrical function. By using three degrees of freedom (b0¸ Ω and m) the introduced 

channel model can accurately describe different propagation environments, as well as different 

LEO satellite elevation angles. Usually, quality of the channel can be described by the level of 

shadowing included in the model and we distinguish low, average and heavy shadowing, with 

parameters given in Table 1.     

 

Table 1. Channel parameters for different scenarios. 

 

 

 

 

 

 

 

Propagation scenario b0 Ω m 

Infrequent low shadowing  0.158 1.29 19.4 

Average shadowing 0.126 0.835 10.1 

Frequent heavy shadowing  0.063 0.000897 0.739 
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SECTION 3 – OVERVIEW OF THE IMPLEMENTED EXPERT SYSTEM AND ML 

MODELS 

This section presents an overview of implemented expert system, ML models used for the 

channel state prediction task, the evaluation dataset, evaluation protocol, and evaluation 

metrics. 

3.1. EXPERT SYSTEM 

The implemented expert system is structured around the channel states of RANs, more 

specifically simulated SNR values, and performs the prediction for the optimal MODCOD and 

RAN that should be used for data transfer in the following time interval. The system inputs are 

the SNR values from RAN channels in a sequence form, based on several observed timepoints. 

Based on these inputs, the system predicts the SNR values for the RAN channels for the next 

timepoint and makes a decision on which MODCOD and which RAN should be used. 

The expert system is focused on the maximum amount of data that can be correctly transmitted, 

choosing the RAN with the higher SNR value, and the MODCOD with the highest transmission 

rate that can be successfully transmitted. 

The system used several different ML algorithms for SNR prediction, including linear regression 

(LR), support vector machine (SVM), k nearest neighbors (KNN) and a fully connected neural 

network (NN). Each of the system evaluation protocols was also done using two different 

MODCOD scenarios. In the first scenario end-used implements small portion of different 

MODCODs (the same assumption is used in Deliverable 4.1) which are the most used operation 

points in DVB-S2X protocol. The second scenario includes all of the operation points, used when 

communicate with short frames of the DVB-S2X protocol. The spectral efficiencies (�
) and the 

SNR thresholds (�(�
), minimal SNR value needed to operate with the efficiency �
) for the 

MODCODs, for both scenarios, are listed in Table 2. 

The metrics that were used for evaluation were the mean square error (MSE), mean absolute 

error (MAE), normalized mean square error (NMSE) and normalized mean absolute error 

(NMAE). Each metric was calculated between the predicted and true value of the respective SNR 

on the test set. The evaluation of the system was done using leave-one-out cross-validation, 

where data from a single simulation is used for testing, and the data from other simulations is 

used for training the ML algorithm. This is repeated 12 times, i.e. the number of simulations that 

were performed to create the dataset. The final system evaluation includes the performance of 

each expert system on the test set, measured by the average spectral efficiency obtained on the 

test set, as well as the transmission error rate. Expert system evaluation also includes the 

number of handover events that occurred, and the number of handovers is compared between 

various versions of the system. 
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Table 2 : MODCODs used for system evaluation. 

MODCOD 1 

Modulation �
 [b/s/Hz] �(�
) [dB] 

8PSK 1.22 3.95 

16PSK 1.63 6.1 

16APSK 1.86 7.1 

16APSK 2.02 7.75 

16APSK 2.48 9.8 

MODCOD 2 

Modulation �
[b/s/Hz] �(�
) [dB] 

BPSK-S 1/5 0.1 -9.9 

BPSK-S 11/45 0.12 -8.3 

BPSK 1/5 0.2 -6.1 

BPSK 4/15 0.27 -4.9 

BPSK 1/3 0.33 -3.72 

QPSK 11/45 0.49 -2.5 

QPSK 4/15 0.53 -2.24 

QPSK 14/45 0.62 -1.46 

QPSK 7/15 0.93 0.6 

QPSK 8/15 1.07 1.45 

QPSK 32/45 1.42 3.66 

8PSK 8/15 1.60 4.71 

8PSK 26/45 1.73 5.52 

16APSK 7/15 1.87 5.99 

16APSK 8/15 2.13 6.93 

16APSK 26/45 2.31 7.66 

16APSK 3/5 2.40 8.1 

16APSK 32/45 2.84 9.81 

32APSK 2/3 3.33 11.41 

32APSK 32/45 3.56 12.18 

3.2. THE EVALUATION DATASET 

The dataset used for the evaluation of the developed system contains 12 distinct simulations with 

different parameters. Each simulation contains between 2030 and 2045 timepoints and each 

timepoint contains data from two RANs, and each in each timepoint each RAN is described by a true 

SNR value and a measured SNR value. These time series are obtained by Monte Carlo simulation, 

described in Deliverables D2.1 and D4.1. True SNR values are used solely for the evaluation process, 
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while the measured values are used for ML inputs and decision making

implementation. 

Half of the data was generated with a low D

high Doppler frequency shift (100Hz)

in the evaluation. In each half of the data

dB to 12 dB to access system performance 

visualization of the simulations can be seen in Fig

characteristics, and a violin plot 

simulation. The S	axis of all subplots in Fig

Figure 2
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sured values are used for ML inputs and decision making, to present a realistic 

data was generated with a low Doppler frequency shift (10Hz) and the other half with a 

(100Hz), so that two different channel characteristics can be considered 

each half of the data, a range of expected SNR values were used as well, from 7 

dB to 12 dB to access system performance with both higher and lower available SNR

visualization of the simulations can be seen in Fig. 2, including a small segment to show the temporal 

characteristics, and a violin plot [5] to show the distribution of the SNR values for the entire 

axis of all subplots in Fig. 2 is shared, so that the SNR values can be compared.

2. Dataset visualization with included violin plots. 

to present a realistic 

and the other half with a 

hannel characteristics can be considered 

SNR values were used as well, from 7 

both higher and lower available SNR values. A 

, including a small segment to show the temporal 

to show the distribution of the SNR values for the entire 

values can be compared. 
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3.3. ML MODELS 

The ML models were used for the prediction of future SNR values to make the MODCOD and 

satellite selection process more accurate. For the evaluation scenario, the predictions were 

based on 10 consequent timepoints, to provide enough inputs to the algorithms to make a 

reliable prediction, yet limit the possibilities for overfitting the data. 

For each simulation SNR prediction was performed for each RAN separately. A window of 10 

samples from measured SNR was used with a stride of 1, and for each 10 consequent measured 

SNR samples, the label was the measured SNR value from the subsequent timepoint. The input-

output pairs from the simulations used for training were used to train the models, and the data 

from the test simulation was used for evaluation. The ML models that were used are LR, SVM, 

KNN, and NN. 

The training process of the ML algorithms represents the adaptation of the ML model 

parameters to optimize a certain function. This function is called the loss function, and in 

supervised learning, which is the type of learning used in the described research, this function 

quantifies the disagreement between the model predictions and the true values the model is 

trying to predict. The learning process essentially represents the adaptation of parameters so 

that the loss function has the lowest possible value on the data from the training set. This main 

principle is the same for all stated ML algorithms, however, the difference between the models 

is the nature of their parameters and how they function. 

LR represents a simple algorithm that is linear in nature, and essentially has a coefficient for each 

input value and a bias factor [6]. These parameters are optimized in order to obtain the lowest 

MSE between the predictions and labels of the train set. KNN is also a simple algorithm that does 

not have parameters in a conventional sense [7]. This algorithm creates a prediction on the test 

set based on the “closest” neighboring values that can be found in the train set. SVM is a type of 

algorithm that has the optimization complexity as linear regression but uses kernels to transform 

the inputs into a higher dimensional plane [8]. This essentially enables SVM to adapt its 

parameter to a more dispersed group of input features and potentially achieve better results. 

The NN is a type of algorithm that mimics the functionalities of the human brain. It is based on 

matrix multiplication and nonlinearities introduced through activation functions that are applied 

after matrix multiplication. All stated algorithms have hyperparameters that are out of scope for 

this phase of the research, but NN architecture and hyperparameter tuning pose a much more 

complicated task than the other mentioned ML algorithms. NN algorithms can also model much 

more complex dependencies between inputs and outputs when compared to other algorithms 

but have multiple caveats that can lead to suboptimal performance. 

For the testing performed on the dataset, the problem of NN architecture and ML 

hyperparameter tuning can be considered out of scope. Therefore, all default settings for the 

algorithms are kept as are by default in the scikit learn library [9], which was used for all ML 

model implementations. The exception is the NN, where the number of neurons in the hidden 

layer was lowered from 200 to 50 considering the amount of available data, and the maximum 

number of epochs was increased from 200 to 500 so that the optimization could converge. 
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SECTION 4 – RESULTS AND DISCUSSION 

4.1. SNR PREDICTION  

 

The evaluation metrics for the SNR prediction problem using the described ML algorithms as well 

as the outdated information approach as a baseline is presented in Table 3. 

Table 3. SNR prediction metrics averaged over all test sets and averaged for both satellites. 

 MAE [dB] NMAE MSE [dB^2] NMSE 

Outdated 

information 
2.336 0.675 14.165 1.164 

LR 1.960 0.572 7.294 0.612 

KNN 1.312 0.329 3.048 0.255 

SVM 1.375 0.398 5.361 0.445 

NN 1.385 0.402 4.547 0.377 

 

The outdated information which simply considers the latest SNR value of the channel to be the 

same as the one that follows it, clearly shows the worst performance. This is expected as there is 

no mechanism to compensate for any faster changes in the channel that occur when there is a 

high doppler frequency shift. 

In comparison, the ML algorithms show lower error values, but LR has a distinctly bad 

performance. The simplicity of the LR algorithm, and the two different characteristics of the 

channels available in the dataset (slow changing and quick changing based on the frequency 

shift) allow it to only make minor improvements when compared to the outdated information. 

On the other hand, The KNN, SVM and NN have a similar performance, with the best being KNN 

in all cases. 

The KNN algorithm is the simplest after the LR, however it owes its best performance to its non-

linear estimation that is based directly on observing the distance from the values contained in 

the training set. The obtained MAE value of 1.312 dB is almost half the initial value that is 

obtained using the outdated information. It is also important to note that the outdated 

information principle can give great results when the channel has slow changes, which is the 

case in half of the used dataset. 

The goal of the simulations was to cover the two extremes that can occur in practice, and in a 

realistic scenario, the outdated information approach would most likely have a worse 

performance as compared to the one shown in Table 2. In contrast, the other ML algorithms 

(perhaps aside from LR) are not expected to have any difficulties, since they show great results 

even if they are trained and evaluated on extreme scenarios. In general, the expansion of the 
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dataset and the usage of data that has a 

improve the performance of the implemented ML algorithms.

The results of the algorithm performance for each fold of the cross

simulation file separately is shown in Fig

each satellite separately, for each observed algorithm,

each expected SNR value. Fig.

Fig. 6 the NMSE. 

Figure 3. The MAE for each individual algorithm, satellite and simulation condition.

The results shown in Fig. 3 present several important findings. 

algorithms is worse when evaluated on the high D

the lower Doppler frequency. This is expected, as it is much easier to predict the forthcoming 

SNR value if the changes in the channel are slower. This is so prominent that the best performing 

algorithm for the higher Doppler frequency always has a bigger error than the worst performing 

algorithm for the lower Doppler frequency, regardless of the expected SNR.

Another important finding is that 

for the higher Doppler frequency than it has for the lower 

to the other algorithms. The LR, which has the worst performance out of all the ML models, even 

has a higher error for the low D
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dataset and the usage of data that has a continuous span of characteristics is expecte

improve the performance of the implemented ML algorithms. 

The results of the algorithm performance for each fold of the cross-validation, i.e. each 

shown in Fig. 3, 4, 5 and 6. Each figure shows the obtained metric for 

each satellite separately, for each observed algorithm, each frequency shift condition and

. 3 shows the MAE metric, Fig. 4 the NMAE, Fig

. The MAE for each individual algorithm, satellite and simulation condition.

present several important findings. Firstly, the performance of all 

rse when evaluated on the high Doppler frequency shift data, in comparison to 

oppler frequency. This is expected, as it is much easier to predict the forthcoming 

SNR value if the changes in the channel are slower. This is so prominent that the best performing 

oppler frequency always has a bigger error than the worst performing 

oppler frequency, regardless of the expected SNR. 

Another important finding is that the outdated information approach has a much higher error 

er frequency than it has for the lower Doppler frequency, when compared 

to the other algorithms. The LR, which has the worst performance out of all the ML models, even 

as a higher error for the low Doppler frequency that the outdated information approach.

span of characteristics is expected only to 

validation, i.e. each 

figure shows the obtained metric for 

each frequency shift condition and for 

the NMAE, Fig. 5 the MSE and 

 

. The MAE for each individual algorithm, satellite and simulation condition. 

Firstly, the performance of all 

ta, in comparison to 

oppler frequency. This is expected, as it is much easier to predict the forthcoming 

SNR value if the changes in the channel are slower. This is so prominent that the best performing 

oppler frequency always has a bigger error than the worst performing 

the outdated information approach has a much higher error 

oppler frequency, when compared 

to the other algorithms. The LR, which has the worst performance out of all the ML models, even 

oppler frequency that the outdated information approach. For 
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the low Doppler frequency, the difference between the ML algorithms is also a lot more subtle.

This could indicate that for channels which have slower changes, the outdated information 

approach can successfully be used, and the implementation and intr

could be redundant. In contrast, channels that have quicker changes are not at all suitable for 

this approach, and substantial benefits can be obtained even from LR.

Figure 4. The NMAE for each 

For the NMAE, the results closely resemble the ones presented for MAE. Since NMAE is 

normalized using the standard deviation of the signal, the NMAE error that is over 1 essentially 

means that the estimation power of the algorithm is worse than just predicting the mean value 

of the signal for each and every sample. This is the case for all evaluations of the outdated 

information approach and stands in line with the 

Doppler frequency shift channels.
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oppler frequency, the difference between the ML algorithms is also a lot more subtle.

This could indicate that for channels which have slower changes, the outdated information 

approach can successfully be used, and the implementation and introduction of ML algorithms 

could be redundant. In contrast, channels that have quicker changes are not at all suitable for 

this approach, and substantial benefits can be obtained even from LR. 
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Figure 5. The MSE for each individual algorithm, satellite and simulation condition.

The MSE metric provides similar conclusions as the MAE and NMAE. The comparison between 

algorithm performance stands and there is no real difference in the conclusions that can be 

draw, aside from perhaps a smaller visual difference betw

frequency shift data. The MSE and MAE metric are similar in nature, and the poten

that could be observed might be due to outlier errors, which are higher for MSE th

the observed data, however, the distribution of the data is such that there are no 

outliers which is why the conclusions drawn are 
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for each individual algorithm, satellite and simulation condition. 

MSE metric provides similar conclusions as the MAE and NMAE. The comparison between 

formance stands and there is no real difference in the conclusions that can be 

draw, aside from perhaps a smaller visual difference between the algorithms for the low D

frequency shift data. The MSE and MAE metric are similar in nature, and the poten

that could be observed might be due to outlier errors, which are higher for MSE th

the observed data, however, the distribution of the data is such that there are no 

conclusions drawn are the same. 

 

MSE metric provides similar conclusions as the MAE and NMAE. The comparison between 

formance stands and there is no real difference in the conclusions that can be 

een the algorithms for the low Doppler 

frequency shift data. The MSE and MAE metric are similar in nature, and the potential difference 

that could be observed might be due to outlier errors, which are higher for MSE than for MAE. In 

the observed data, however, the distribution of the data is such that there are no significant 
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Figure 6. The NMSE for each individual algorithm, satellite and simulation condition.

The NMSE, as well as all other metrics, gives similar results. One result which is important to 

note is that the SVM and LR which 

channel data, now have a NMSE value close to 1. 

variance of the signal, and observing the square error, these algorithms do not give the best 

performance. However, the KNN and NN still show great results.

An interesting occurrence that is consistent through

algorithm has a bigger error for SNRs of 7 and 12, when compared to other SNR values, i.e. a 

worse performance in the extreme cases. This is because of the nature of the KNN algorithm, 

which performs worse if it has to perform estimates outside of the data values that are available 

in the train set. Still, the results in these extreme cases are still superior to the on

algorithms. 
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MSE for each individual algorithm, satellite and simulation condition. 

MSE, as well as all other metrics, gives similar results. One result which is important to 

SVM and LR which had a NMAE value lower than 1 for the quick changing 
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4.2. EXPERT SYSTEM PERFORMANCE 

The evaluation of the expert system was performed by observing the average spectral 

efficiencies and the error rate, averaged over all test sets during cross-validation. The results are 

presented for all used algorithms, and both observed MODCOD scenarios in Table 4. 

Table 4. Average spectral efficiencies and error rate averaged for all test sets. 

 MODCOD 1 MODCOD 2 

 Average �
 [b/s/Hz] Error rate [%] Average �
[b/s/Hz] Error rate [%] 

Outdated 

information 
1.587 28.6 1.762 36.8 

LR 1.638 27.3 1.879 33.0 

KNN 1.900 15.8 2.233 21.6 

SVM 1.814 19.8 2.137 25.1 

NN 1.826 18.5 2.083 25.7 

 

The obtained spectral efficiencies and error rates compare the ML algorithms in almost the same 

way as the observed SNR regression errors. The only difference that can be observed is that for 

MODCOD 2 the SVM outperforms the NN, which was not the case for the SNR regression 

evaluation. This, although not major, especially since the best performing algorithm is still the 

KNN, opens up an important question relating to the usage of ML algorithms in the expert 

system. SNR prediction plays a crucial role in the system pipeline, but the final metrics that are 

relevant for system performance are the spectral efficiency and error rate. Although an 

algorithm could be better at predicting SNR values, it could do so in the cases (SNR range) that is 

not crucial for decision making, and that would not change the MODCOD selected for data 

transfer. In this sense, it is important to evaluate all parts of the system individually, but also the 

system as a whole, to gain both a micro and a macro evaluation perspective. 

When comparing the results between the two MODCOD scenarios, it can be seen that the 

MODCOD 2 offers a higher spectral efficiency but also a higher error rate in comparison to 

MODCOD 1, for each of the proposed algorithms. This is due to a higher number of available 

modulations in the MODCOD 2 list, allowing for a higher spectral efficiency for a given SNR, but 

also being more prone to errors. 

 

Observing the implemented system, since the decision system always chooses the satellite with 

the higher SNR, the number of handovers does not depend on the used MODCOD. The average 

number of handovers per simulation, averaged over all cross-validation fold is shown in Table 5. 
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Table 5. Average number of handovers on the test set for all observed algorithms. 

Number of handovers 

Outdated 

information 
610 

LR 464 

KNN 589 

SVM 515 

NN 565 

 

The number of handovers gives an interesting conclusion, once again indicating the importance 

of observing the system as a whole. The outdated information averages at the highest number of 

handovers, and even in terms of handover optimization would not be the greatest solution. 

However, the KNN algorithm which offered the lowest SNR prediction errors as well as the 

lowest transmission errors and spectral efficiencies shows the second highest number of 

handovers. If this number is not crucial for system performance, the KNN could of course be 

used, but if it is, then perhaps a different ML algorithm could be more efficient. The algorithms 

that have higher spectral efficiencies and lower error and SNR prediction rates, also have a 

higher number of handovers (starting with KNN, followed by NN, SVM and LR). This would 

indicate that there should perhaps be a tradeoff between the spectral efficiency and the number 

of handovers. It could also be of interest to develop a system that would not always choose a 

channel with a higher SNR, but rather balance the need for a higher spectral efficiency with the 

number of handovers. Out of all the algorithms, it is important to note, that NN can have 

complex loss functions, and can be trained with various constraints, so perhaps the entire 

system can be designed with several (or one complex) neural network that can learn to make 

decisions taking into consideration handover and other resource limitations. 
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SECTION 5 – CONCLUSIONS 

 

This Deliverable has presented a review of the simulation protocol and a handover procedure 

that is based on the SNR measurements. An expert system has been proposed that incorporates 

an ML model to predict future SNR values, and based on the prediction the system decides 

which RAN should be used for the connection. The system is evaluated for various ML algorithms 

including NNs, based on 12 different simulations with varying expected SNR values and Doppler 

frequency shifts. The obtained results have been observed in terms of pure SNR prediction 

metrics, as well as average spectral efficiencies, transmission error rates and number of 

handovers for two different MODCOD scenarios. The obtained results show that a clear 

improvement can be obtained using ML models, and direct future work towards optimizing the 

expert system directly on the parameters of interest, i.e., spectral efficiency, error rate and 

handover number. 
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